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i. Introduction. The structure of the front of very intense shock waves and the in- 
tensity of the radiation produced by the front surface are determined by radiant heat ex- 
change in the front region [i]. The radiation of the hot gas, exiting from behind the com- 
pression discontinuity, heats gas which has not yet been shock-compressed. The temperature 
ahead of the discontinuity itself T_ rapidly increases with increase in wave velocity D and 
temperature behind the front Tf. At some critical value D = D c the temperature T_ reaches 
the value Tf(T_ = Tf = Tc) , then with further increase in amplitude (D > Dc, Tf > Tc) remains 
equal to Tf, while an ever lengthening "tongue" of gas heated by radiant heat transfer is 
formed ahead of the discontinuity. Qualitative analysis of the equations of [2] or their 
approximate analytical solution [3] leads to this pattern, and the dependence of front lumi- 
nosity on amplitude calculated on this basis [4] agrees with observation results. 

At Los Alamos Laboratory in 1973 Zinn and Anderson [5], following [1-4], performed a 
numerical calculation of the radiant transfer and gasdynamics equations for a steady-state 
shock wave in air. The goal of that study was apparently obtaining refined and reliable 
quantitative data, unachievable by the simplified analytical solution of [3, 4] (we note that 
the major mathematical results of [3, 4] were confirmed by the calculations of [5] with ac- 
curacy beyond that expected). However, one significant result obtained in [5] proved quite 
strange. For waves with amplitude close to critical, the iteration process did not converge 
to a finite solution. The highest wave amplitude for which a solution could still be obtained 
corresponded to D = 80 km/sec , Tf = 258,000~ T_ = 244,000~ (incidentally, this was con- 
firmed well by the estimates of [3]: Tf = T_ = T c = 285,000~ at D = D c = 88 km/sec). 

From this fact the authors concluded =hat, in general, supercritical steady-state shock 
waves do not exist. A wave in air with D > 80 km/sec is transient, and is in fact converted 
into a thermal wave [i], driven by radiant thermal conductivity. In this case the front 
velocity D is an eigenvalue of the steady-state regime equations for a definite pair of T and 
dT/dx values (i.e., energy flux) behind the front; the role of hydrodynamics is then negligi- 
ble. There is no unique final state with dT/dx = 0 corresponding to a steady-state shock 
wave. The authors also noted that they did not obtain such a solution with flow behind the 
front. ~ 

A conclusion of such a radical nature will perhaps not drastically change our concepts 
of the situation which develops upon a strong explosion in air, where the transition from 
thermal to shock wave most often occurs at D ~ 90 km/sec and T ~ 300,000~ [i], but it is 
certainly of principal significance with respect to shock-wave theory. One can easily con- 
ceive of situations in which a steady-state shock wave would exist with a velocity higher 
than 80-100 km/sec, for example, if a "piston" moving at appropriate velocity or an adequate 
pressure exists behind the front. 

The conflict in the theory must be resolved, and for this purpose a numerical solution 
of the problem was undertaken using formulation close to that of [5] in all expressions of 
principal significance, but also simplified as much as possible with regard to details which 
could not lead to qualitative consequences. In evaluating the results of the calculation, we 
will note immediately that they confirmed the conclusions of the theory of [1-4] as to the 
existence of shock waves of supercritical amplitude. We will demonstrate the most probable 
error in the computation technique used in [5], which leads to an incorrect result, and should 
be kept in mind when performing numerical solutions of radiant gas dynamics problems in the 
future. 
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In [6], which considered the problem of shcok wave front structure with consideration of 
radiation, the calculations were performed for sufficiently low amplitudes, in which case the 
heating temperature ahead of the front T_ does not reach the temperature behind the front Tf. 

2. Formulation of the Problem and Equations. The general formulation of the problem 
of shock-wave structure with consideration of radiant heat exchange in the present study 
will be the same as that of [1-5]. 

We will consider a one-dimensional steady-state regime in a coordinate system fixed to 
the wave front (Fig. i). The x axis is directed in the direction of the flow. The gas ve- 
locity u is positive, and the radiant flux density S, negative. Denoting the pressure, den- 
sity, and specific internal energy by p, p, s, we write the integrals of the continuity, 
motion, and energy equations in the form 

9u - 9oUo; (2.1) 
2 

P + 9 u~ = Po + 9ouo; (2 .2 )  

9u g + ~  + . + S -  9uuo ~o +-~o + " (2 .3 )  

The subscript 0 denotes values in the unperturbed gas before the wave front at x = --~. We 
neglect the radiation flux departing from the wave into the cold gas, i.e., S(--~) = 0; uo = 
D, where D is the velocity of shock wave motion through the cold gas. 

All quantities on the left of the equation are functions of coordinate x. The gas ther- 
modynamic properties s(p, 2), P(P, T) are assumed known. Behind the front at x = += the 
temperature reaches a value constant along x, Tf, and the radiation flux disappears: S(+=) 
=0. 

To solve the problem put forward herein, a very simple variant of radiant transfer cal- 
culation was chosen. To describe the angular distribution of intensity, we will use the 
forward--back approximation of [i], in which unidirectional fluxes traveling in positive S +, 
and negative S-, directions are introduced (Fig. i). Then 

S = S + -  S-.  (2.4) 

We will operate with the integral radiant flux over the spectrum and the corresponding 
mean (over spectrum) absorption coefficient, corrected for constrained radiation ~ although 
this is not of principal import. In fact, in place of the coordinate x we introduce the 
optical thickness 

T ~ i ~dx~ 

measuring this quantity from the unperturbed gas. We will now seek distributions of the 
temperature and other quantities over m rather than x. 

As in [5], we divide the coordinate scale into segments -- plane layers of pptical thick- 
ness h i (not necessarily identical). We assign values on the boundaries of layer i the sub- 
scripts i and i~+ i. 

Equations of the form of Eqs. (2.1)-(2.3) relate the quantities on the boundaries of 
any layer: 

Pi uz ~ @z-lui-1; (2.5) 
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2 
Pi + p[U~ pi--1 + P~--lUi--1; (2.6) 

9iui e~ + ~-i + "=2- + S~ := p ; - l u ~ - i  e i - t  + ~ § + S i -1 .  ( 2 . 7 )  

To calculate the unidirectional fluxes at the i-th boundary it is necessary to consider 
two adjacent layers; we then assume the temperature within the layers from i-~ loto i + 1 
to be the same and denote them by the subscript i. In the forward--back approximation the 
following relationships between the unidirectional fluxes follow from the transfer equations 
(see Fig. I): 

--2hi_ I - -2 f l  I 
s t  ~ s~L~c + o ~ ' ~ ( t - o  - ) (2.8) 

S -  --2hi --2hi * 
ST in i e § o I '~ ( t  - - e  ), (2 9) 

where o is the Stefan--Boltzmann constant. 

The meaning of these expressions is quite simple: The first terms are the fluxes flow- 
ing out through the adjacent boundary and attenuated in the given layer by absorption, while 
the second terms are the intrinsic radiation of the layer with consideration of self-absorp- 
tion; the factor of two appears in the exponent because of lengthening of the paths of oblique 
rays. In principle, Eqs. (2.8), (2.9) are equivalent to the analogous computation expressions 
of [5], but simpler because of the very coarse manner in which oblique rays are considered, 
integral exponents being replaced by ordinary ones. 

We assign conventional forms to the thermodynamic functions: 

e : [1/(? - -  t ) ] p / 9 ,  T = e/c v ,  ( 2 . 1 0 )  

but will consider the adiabatic index y and specific heat c v to be dependent on temperature 
(and density). Corresponding values are found with the aid of tables [7]. Without consider- 
ing the temperature dependence of specific heat, and in part, that of adiabatic index, it is 
impossible to obtain a correct relationship between temperature behind the front and shock- 
wave front velocity; the divergence from the real function Tf(D) in air is so great that the 
solution becomes quite abstract. 

The boundary conditions for Eqs. (2.8), (2.9) are as follows: at x =-~ S-= oT~, where 
To is the temperature of the cold gas, which for convenience in calculation we will consider 
nonzero; behind the front at x - +~ S + = S-, since the temperature asymptotically tends to 
T(x) = const = Tf. 

The last condition is equivalent to S-(+ =~ = oT~. 

3. Numerical Calculation Method. The structure equations were solved by the iteration 
method. However, the simplest possible iteration process, consisting of calculating the ra- 
diant fluxes from the temperature distributions obtained in the previous iteration, produces 
convergent solutions only for waves of relatively low (precritical) amplitude. 

At high Tf not even the first iteration can be performed. The flux ahead of the discon- 
tinuity itself in the zero-th approximation is oT~ and is so great that the temperature ahead 
of the discontinuity, equal to [i] 

T_ -- P0c~ (T_) b' (3. i) 

proves to be greater than Tf. For example, at D = i00 k~/sec, Tf = 4-105 ~ and from Eq. 
(3.1) we obtain T_ = 8.7-10 ~ ~ more than double Tf. Even without considering that this 
violates the second law of thermodynamics [i], the flux S obtained formally in the next ap- 
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proximation from such a temperature distribution travels in the direction from the cold gas 
into the hot, which is physically meaningless. 

This contradiction was noted in [8], but to avoid difficulties an empirical method was 
proposed, based on reducing the flux by a specific factor, and repeating this process at 
each iteration until the contradiction was eliminated. Such a procedure requires solution 
of the equations for a series of reduced fluxes with no correspondence to the physical es- 
sence of the problem, and is inconvenient since the factor by which the flux must be reduced 
is not known beforehand. 

The principle of the method to be present below is to eliminate the possibility of con- 
tradiction itself, by matching the calculation procedure to those factors which in fact do 
not permit the temperature at any point ahead of the discontinuity to become higher than the 
temperature behind the front. The natural radiation of the absorbing layer limits the tem- 
perature. Thus, we isolate from the flux equations for the fluxes the term proportional to 
~T ~, which is then introduced into the balance equations (2.5)-(2.7), so that it is consid- 
ered in determining the temperature distribution in each iteration. 

The calculation procedure consists of the following. The flux difference Si+: -- S i is 
expressed in the form (dS/dT)$hi-1 , where dS/dT at the point Ti is found by differentiating 
Eqs. (2.4), (2.8), (2.9),~with the assumption that in the interval from Ti_1 to Ti+~ T = 
const = Ti. By eliminating Pi, Pi, ui the systems (2.5)-(2.7), (2.10) are reduced to the form 

i-~- [v~-~z --g~-1(?i-1--1)--i +-2- y~-I 2 4 ~ L- -T - - y ~  + 4 Y~ Yi H a~ ~ O, ( 3 . 2 )  

where y~ ..... �9 a t - -  and the "flux difference" a i satisfies the condition 
- - 1  %--I"--i 

-- �9 - - 2 t l i  87Z~ r -- - - 2 h  i -- 

~lq_,u~_~ [e 2,,~_~ + e 1, ~ -- - -  LSi+l e § SLae 2"~-a]. ( 3 . 3 )  

i f  t h e  f l u x e s  a i  a r e  found  f rom a t e m p e r a t u r e  d i s t r i b u t i o n  p r o d u c e d  by the  q u a n t i t y  
y i - ~ ,  i . e . ,  i f  t h e  q u a n t i t y  a• i s  assumed t e m p e r a t u r e - i n d e p e n d e n t  i n  c a l c u l a t i n g  t h e  l a s t  
e x p r e s s i o n  o f  Eq. ( 3 . 2 ) ,  t h e n  t h i s  e q u a t i o n  would be q u a d r a t i c  i n  y•  We w i l l  i n t r o d u c e  t h e  
t e r m  a i y ~ ,  f i g u r i n g  in  a i [Eq. ( 3 ) 3 ) ]  and d e s c r i b i n g  t h e  n a t u r a l  r a d i a t i o n  of  t h e  l a y e r ,  and 
i n  Eq. ( 3 . 2 )  i n  t h e  c a l c u l a t i o n  o f  Yi .  Thus ,  t h e  e q u a t i o n  w i l l  be  f o u r t h - o r d e r .  Th i s  com? 
plication is compensated by the fact that we no longer need be concerned with the appearance 
of contradiction. In accordance with the actual physics of the problem, the temperature does 
not increase above the value dictated by the combined action of light emission and absorp- 
tion. At very high wave amplitudes Eq. (3.2) is satisfied by a root value which is close to 
the solution of the equation ai(Yi) = 0, corresponding to compensation of unidirectional 
fluxes. It is evident from Eq. (3.2) that the temperature cannot then be hSgher than the 
effective temperature of the radiation transferred by the fluxes Si+1 and Si_~. Even in the 
first iteration T_ cannot exceed Tf, as must be in supercritical waves. The calculations 
performed revealed that the simple iteration method without separation of the layer natural 
radiation is unusable for calculation of supercritical amplitude shock waves: The first 
iteration procedure caused a machine crash. Apparently this was the cause of the unsuccess- 
ful calculations of [5] for waves with D > 80 m/sec. 

We will note [9, i0], in which natural radiation was considered in determining nonequi- 
librium factors to increase the stability and convergence of the iterations in solving the 
energy equations and nonstationary gasdynamics problems. 
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4. Calculation Results and Evaluation. Results of calculations for shock waves in 
normal density air are presented in Figs. 2-5 (To = 300~ 

Figure 2 shows distributions of temperature T over optical thickness ~. Waves of three 
amplitudes were calculated: one of precritical amplitude with D - 55.6 km/sec (curves i in 
Figs. 2-4), and two supercritical with D = 85.9 km/sec (curves 2) and D ~ Ii0 km/sec (curves 
3). The distribution for the various waves have been shifted relative to each other by an 
arbitrary distance. This was done only for the reader's convenience in examining the graphs. 
Figure 3 shows the same distributions as Fig. 2, but in large scale for the region near the 
compression discontinuity, in order to show details of the temperature peak. Figure 4 pre- 
sents density distributions, or more accurately, the degree of compression, P/Po, where Po = 
1.29,10 -3 g/cm 3. Figure 5 shows temperatures behind the front Tf, ahead of the compression 
discontinuity T_, and behind the discontinuity T+ as functions of front velocity D. 

The temperature distributions are in complete qualitative agreement with predictions of 
analytical theory, so the question of the possibility of existence of supercritical waves is 
answered unambiguously and positively. 

Generally speaking, it would be possible to transform from distributions over T to dis- 
tributions over spatial coordinate, if we choose a function • (T) in a reasonable manner. 
However, there is no special need to do this. For subcritical waves the calculations of [5] 
are correct. These provide high accuracy because of the detailed consideration of radiation 
spectral characteristics. For supercritical waves • is essentially characterized by the 
Rosseland path -- the distribution was discussed in [i, 3]. 

We will now offer a few words ooncerning realization of shock waves with supercritical 
amplitude. A shock wave must be produced, if the conditions, in particular, boundary condi- 
tions, are favorable. For example, if behind the wave there acts a "piston" which drives 
the gas at high velocity, exceeding the supercritical value, then a shock wave, and not a 
thermal wave, will be produced.* Supercritical amplitude waves may be obtained in explosions 
of sufficient intensity, and also in a gas of reduced density, where the critical transition 
is accomplished at lower temperatures behind the front, i.e., for weaker waves. 
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